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Abstract

A state space formalism for thermoelastic analysis of a cylindrically anisotropic elastic body is developed. By proper
grouping of the stress and taking ro;; instead of g;; as the stress variables, the three-dimensional equations of elasticity in
the cylindrical coordinates are concisely formulated into a state equation and an output equation using matrix nota-
tions. The general solution for the generalized plane problems is derived in a simple manner. Effects of extension,
torsion, bending, temperature change and body force are accounted for systematically. The eigen relation arising from
the solution process and the degenerate cases of repeated eigenvalues are examined. To demonstrate the power of the
formalism, exact solutions to extension, torsion, bending and thermo-mechanical loading of a general cylindrically
anisotropic circular tube or bar are obtained. The surface tractions and temperature field may vary in 6 but not in z.
Displacement as well as traction boundary conditions are considered. It appears that many problems of anisotropic
elasticity are best viewed and treated in the state space framework.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper presents a state space formalism for thermoelastic analysis of a cylindrically anisotropic
elastic body. In a cylindrically anisotropic material the elastic property at each point is characterized by the
radial, tangential, and axial directions in the cylindrical coordinates. The material possesses different
properties in each direction. Cylindrical anisotropy is not uncommon in the cylindrical body, for examples,
it appears in bamboo, tree trunk and carbon fiber (Christensen, 1994). The metallic forming process, such
as extrusion or drawing, may result in cylindrically anisotropic products. The filamentary wound composite
is a cylindrically orthotropic material on the macroscopic scale. According to the class of elastic symmetry,
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the cylindrical body may exhibit special type of material anisotropy such as monoclinic anisotropy, cy-
lindrical orthotropy, and transverse isotropy.

The formulation of anisotropic elasticity in the cylindrical coordinates could be very complicated, in-
volving lengthy and cumbersome equations. Solutions were known only for axisymmetric problems (Ting,
1996, 1999; Chen et al., 2000), or for special anisotropy (Lekhnitskii, 1981; Pagano, 1972; Jolicoeur and
Cardou, 1994; Kollar and Springer, 1992). It is known that the Lekhnitskii formalism is ineffective for
displacement boundary value problem, whereas the Stroh formalism is intended for problems of plane
deformation in the Cartesian coordinates, unsuitable for problems in the cylindrical coordinates. Recently,
we have treated extension, torsion, bending, shearing and pressuring of laminated composite tubes and
functionally graded cylinders (Tarn, 2001; Tarn and Wang, 2001) by a state space approach. The material
was assumed to be cylindrically monoclinic anisotropic having elastic symmetry with respect to
r = constant. Attention then was paid to an explicit formulation and analysis of the specific problems.
Herein we develop the state space formalism in the cylindrical coordinate system for an elastic body of a
general cylindrically anisotropic material. It is noteworthy that Alshits and Kirchner (2001) has studied a
class of problem of cylindrically anisotropic elastic materials by representing the basic equations in a system
of differential equations of the first order.

One of the prominent features of the state space formalism is that a compact state equation and an
output equation in terms of the displacement vector and two stress variables embrace in full the three-
dimensional equations of anisotropic elasticity in the cylindrical coordinate system. The components of the
displacement and stress and the thermoelastic constants of the material appear explicitly in the equations,
yet the formulation is remarkably simple. This is achieved by grouping the stress into [o,, 6,9, 0,.] and [0y,
., 0y, and expressing the basic equations in matrix forms. The reason for making this grouping is because
the traction vector 7, on the cylindrical surfaces r = constant is precisely [o,, 6,9, 0,.]; these stress com-
ponents often appear as a group. Moreover, it is advantageous to take rt, instead of z, as the stress variable.
The novel arrangements greatly simplify the formulation and result in concise matrix equations in terms of
the displacement and rt,. The analysis is much more clear and easier in the state space setting.

The formalism enables us to determine a general solution for a circular cylindrical elastic body of a
general cylindrically anisotropic material subjected to thermo-mechanical loads. The surface tractions and
the temperature field may vary in 0-direction but not in z-direction. Effects of antiplane deformations, end
loads, temperature change, and body force are accounted for through the particular solution. In deter-
mining the homogeneous solution to the state equation an eigen relation arises naturally. The eigenvalues
and eigenvectors possess useful properties which will be explored along the way. In particular, the de-
generate cases of repeated eigenvalues occurring when the material is cylindrically orthotropic, transverse
isotropic or isotropic are studied. To demonstrate the power of the formalism, exact thermoelastic solutions
for a circular tube or bar subjected to extension, torsion, bending, nonuniform surface tractions and
temperature field are obtained directly from the general solution. Displacement and traction boundary
conditions are treated in the same way. As far as the author is aware of, analytic solutions to these problems
of a general cylindrically anisotropic material are not available in the literature. Various solutions obtained
herein appear for the first time. The study shows that it is expedient to treat many problem of anisotropic
elasticity in the cylindrical coordinates as well as in the Cartesian coordinates in the state space framework.

2. State space formulation

2.1. Basic equations in matrix forms

We consider a cylindrically anisotropic elastic material of the most general kind. Referred to the cy-
lindrical coordinates, the thermoelastic constitutive equations of the material are
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oy Ci1 Ci2 €13 Ci4 Ci5 Cie & Bi
09 Cla € (€3 C C5 Cx6 & B>
O: | _ | €13 €3 €33 Cu €35 C36 & | Bs T (1)
09z Ci4 Co4 C3q4 Caq4 C45 C46 2¢y. Ba ’
0 Ci5 €5 C35 C45 Cs5 Csp 2¢,, Bs
09 Cl6 Cx6 C36 Ca6 C56 Cop 2¢.9 Bs
where ¢, ¢,...,0,,0,...,are the strain and stress components, c;; and f; are the elastic constants and the

thermal coefficients of the material, 7T is the temperature change.
The strain—displacement relations are

1
& = ur,ra &g =7r (MG,G + ur)7 & = Z’lz.,z7 (2)
-1 . o 1
2802 = Uy +r U0, 2‘('rz = Uz, + Uy z,y 28r0 =TI Up + Ug, — 71 Ug,
where a comma stands for differentiation with respect to the suffix variables.
The equilibrium equations in the cylindrical coordinates are

aro-r + rila()gr() + 1"7] (O-r - 00) + azo-rz +R= 07 (3)
aro-r() + rila()al) + 27710}() + aza()z + 0= 07 (4)
aro-rz + r_laﬂaﬁz + r_lo-rz + aZGZ + Z= 07 (5)

where O,, 0y, 0. denote partial differentiation with respect the suffix coordinate; R, @, Z denote the com-
ponents of the body force.

In view of the fact that the tractions on the cylindrical surfaces » = constant are expressed by the stress
components a,, g,9 and o,., it is expedient to group the stress into [o,, 6,9, 6,-] and [0y , 0., 64.], and rewrite
Eq. (1) as

T Cg’ Co | |7 _ B, T 6)
- )
Ts Crs CSS ‘J)s ﬂs
where
_ T _ T
T, = [ g, (o] Oz ] 9 Ty = [ () 0, 09 ] 3
T T
Y= [Sr 28}’0 28rz] ) Vs = [80 & 2802] )
T €1 Cie Cis T Cp (€3 Cx4
C.=C,.=|cis ¢ 56|, Cy=C,=|cn c33 ca,
Ci5 Cs6  Css Caq C34  Cyq
Ci2 Ci13 Ci4 ﬁl ﬁz
Cy=|cs ¢35 a5, B, = ﬁﬁ ) B, = 53
Cx C36 C46 55 ﬁ4

The strain—displacement relations can be expressed in a matrix form as

)=o) (o) + L) ™)

where I is the identity matrix, and

L, = K0y + Kyr0,, L, = K40 + Ksr0;,
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U 00 0 00 0 00 0

u=|u |, Ki=|1 0 0|, Kz=[0 0 0|, Ky=—|0 1 0],
", 00 0 1 00 00 0
010 00 0 1 0 0

Ki=[0 0 0], Ks=|0 0 1|, Ke=1]0 0 0
00 1 010 00 0

Using Eq. (7), we may rewrite Eq. (6) as
|:I"L'r:| _ I”ar |:C,rll:| |:[C,~F(L1 + K;) + C,.S(Lz + KO]H] . |:ﬂr] Tr. (8)

r; CLu [CL(Li + K3) + Cyy(Ly + K¢)]u B,
The equilibrium equations (3)—(5) may be cast into a single matrix equation as
r0,(rt,) + (Ly — K3)(re,) + (L — Kg)(re,) + Fr* =0, ©)

where F=[R © Z]" is the body force vector.

By means of the K; matrices and the differential operators L; and L, we are able to arrange the basic
equations of anisotropic elasticity in the cylindrical coordinate system into Egs. (8) and (9). The two matrix
differential equations are remarkably simple and concise. Hereafter u, rz,, rt, and the four sub-matrices of
the stiffness matrix play the principal roles; the displacement and stress components and the individual
elastic constants are no longer in view.

2.2. Three-dimensional equations in the state space

Eq. (8); may be expressed as

rou=C.'Djju+C,'(rt.) + C.'B,Tr, (10)
where
Dy = —[C..(Ks + L) + Cs(Kg + Ly)].
Substituting Eq. (10) into Eq. (8), and the resulting equation into Eq. (9) yields
~ _ u ~
1= [ CuKs + L) CIC'] [m] — B.T, (11)
r2r5) - (D D] ¥ | (KT LR 1 = (12)

where

D21 = (Kg - L;r)éos(Ké + LZ)» éss = Css - CESC;lCrw

Dy, = (K] — L)C, + (K§ ~ L)CIC,!, B, =B, — C.C,'B.

Casting Eqgs. (10) and (12) into a single matrix differential equation, we arrive at

Of u C, Dy C,'][wu C.'B, 0],
. — " i3 m rr Ty — . 13
rar |:r1r:| |: D21 D22 rt,. + (L;F — Kg—)ﬂv r F r ( )
The state equation (13) and the output equation (11) embrace the three-dimensional equations of an-

isotropic elasticity in the cylindrical coordinates in full. The state equation plays a key role in the formalism,
once it is solved, the displacement and stress follow. Determining the analytic solution of Eq. (13) in general
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is formidable, if not impossible. Yet its structure suggests that when the functional dependence on one of
the coordinates is known or can be assumed a priori, the equation becomes two-dimensional and might be
amenable to analytic treatment. Indeed, with the formalism, it is easy to derive the displacement as a
function of z and obtain the general solution to the state equation for the generalized plane problem.

The foregoing formulation is based on the stiffness representation. The formulation could be based on
the compliance representation as well. To this end, the constitutive equations are expressed as

Y| Srr Srs T o,
[VJ - {S,TS S,YJ [rs] + [%}T’ (14)

where the compliance matrix and the thermal expansion vector are

Srr Srs _ Crr Crs - L Srr Srs ﬁr
S, Se| |Cy Cuf ' |a]| [Sy SuflB]
Substituting Eq. (7) in Eq. (14) and using the resulting equation along with Eq. (9) to represent 7, in
terms of the state vector [u, rt,], one could derive the state equation and the output equation in terms of the

elastic compliance. Following the same line as in Part I of the paper using the identities associated with the
constitutive matrices, it can be shown that the equations are identical to Egs. (11) and (13).

3. Generalized plane problems
3.1. State equation and output equation
The displacement field in the body in the state of generalized plane strain and generalized torsion can be

obtained simply by transforming the expressions in the Cartesian coordinates (Egs. (22)—(24) in Tarn, 2002)
to the ones in the cylindrical coordinates using

U, =uy o8O +uysinf, wy=—u;sinf+uycosb, u.=u (15)
to produce

U, =u— %zz(bl cos 0 + b, sin 0) + z(w, cos @ — w, sin 0) + uy cos B + vy sin 6, (16)

ug=v+ %zz(bl sin 0 — by cos 0) + ¥rz — z(w, sin 0 + w, cos 0) + wor — ug sin 0 + vy cos 0, (17)

u, = w—+z(byrcos 0 + byrsin 6 + ¢) + r(w; sin @ — w, cos 0) + wy, (18)

where u, v, w are unknown functions of r and 0; ug, vy, wy, @y, W, @, are constants characterizing the rigid
body displacements; the constant ¢ is a uniform extension, ¥ is the twisting angle per unit length along z-
axis, b; and b, are associated with bending. Eqs. (16)—(18) were obtained in Section 23 of Lekhnitskii’s
monograph (1981) by direct yet intricate manipulation of the displacement-stress relations.

On substituting Egs. (16)—(18) in Egs. (11) and (13), the state equation and the output equation read

0| u L, C/ u { P: ] C;lﬁr ( { P ]
y— = " — &l _ -T ~ r— 79 ~
or T, Ly Ly rtT, ¢k K4ﬁxa() cxuk;
. 0
+Re{(bl _1b2)|:~ pl i :|el€} B |: :|)V27 (19)
C‘23k3 — 1])3 f

rs r

reo=[Ly CLC'] [V‘; } + (Cykie — B,T)r + Cykat) + ki Ref{ (by — iby)el’})r?, (20)
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a=[u v w]', f=[R © 0],

Lll = _C;rl [CrrK3 + CrsK6 + (CrrKl + CrsK4)a()]7
Ly = (K§ — KIa())ém(K6 +Kidp), Ly = Cy(Kydy +Ky),
Ly = [KIC, + KIC! — (KI'C,. + K[ CL)3|C,",

Kk=[0 1 0], ky=[0 0 1], ks=[1 0 0],

p=C,'Ck;, p,=C,'C.ks, p;= 2ok + sk

At this point before solving the state equation, it can be seen that extension and a uniform temperature
change enter the stage through a linear function of », producing axisymmetric deformation; torsion and
bending enter through a quadratic function of r, producing axisymmetric deformation and 0-dependent
deformation, respectively.

3.2. Homogeneous solution

We seek the homogeneous solution to Eq. (19) in the form of Fourier complex series as

00

(@ rt],= > (U, X,]re™, (21)

n=—00

where U, and X,, are constant vectors, 4 is a constant yet unknown.
Substituting Eq. (21) in Eq. (19) leads to an eigen relation

an Nn2 Un ., U,,
NNl @

where

N, = _Cr_,.l(cl + inCZ), N, = C;,l7 N,; = C3 + (7’12 - 1)K4TésaK4 + inC4»

Cl = CrrK3 + CrsK()a C2 = CrrKl + CrsK47 C3 = KIEESJK4 + ngssK67 C4 = KgéssK4 - KzéssK&

Obviously, 4 is the eigenvalue and [U,,, X,,]T is the eigenvector of Eq. (22). It will be shown in the next
section that if J; is an eigenvalue of Eq. (22) so is —Z;, where an over-bar denotes complex conjugate.
Denoting the six eigenvalues for a specific value of n by A, and Ausz = —ZAw (k=1,2,3), then the ho-
mogeneous solution is a linear combination of the six linearly independent eigenvectors associated with the
eigenvalues. Since the displacement and the stress are real, there follows

00 3
Dok Unk Tk Unk+3 in0
R BRG] R b ) o @

where Re{f} denotes the real part of the complex function f; 4,, denotes the kth eigenvalue associated with
the nth term of the Fourier series, [U,, X,,k]T is the associated eigenvector, ¢,; and d,; are complex coef-
ficients of linear combination.
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3.3. Particular solution

The particular solution of Eq. (19) are determined in an elementary way. When the body is subjected to
extension, torsion, bending, a uniform temperature change and body force, the nonhomogeneous terms in
Eq. (19) consist of the r and 7? terms. The particular solution is

[ u } er{al} +rAT{bl} +19r2{c1} +r2Re{ {fl]em}, (24)
", a, b, (V) f

where the terms of ¢ and ¥ are associated with extension and torsion, respectively; the term of €'’ is as-
sociated with bending; the coefficients are determined from

al} - {CJ (Ci+Cy) c, } 1 [ P, } (25)
| 22 K; C,Ks (Cf - C,)C,)! crks |’
- _ _ -1
C1:| _ |:_(jr,,1 ((ll + 2Crr‘) Crrl :| |: | \5) :| (26)
e K C,Ks (Cl —2C,)C;,! Cauks |7
'M;; Mpl|[G | Q o (Bl (g il
[ =[G e [8] =[] @
where
P: 0 P: ] 0
=by| . —-b =by| . b
Q 1[0231(3] 2{1)3], Q 2[0231(3_ + 1{1)3}
-C.1(C, +2C,, c' c'c 0
Mll — rr ( 1 ) T rr 71 , M12 — rr 2 T 71 ,
C3 (Cl - 2CV’)Crr | _C4 C2 Crr
C.'(C, +2C,) c'
My, = T -1
C3 _(Cl - 2C"”)Crr |

The [by, by]" are obtained by replacing [p,, é:ks]" in Eq. (25) by —[C.'B., K(,ES]T. Eq. (24) holds pro-
vided that 4 are not equal to 1 or 2. When A = 1 or 2, the inverse matrices in Egs. (25) and (26) are singular.
This occurs because a member of the nonhomogeneous terms coincides with the homogeneous solution. In
this situation the particular solution must be modified. The coincidental equality 4 = 2 exists only math-
ematically, but 2 = 1 occurs for cylindrically orthotropic, transverse isotropic and isotropic materials.

In case A = 1 the particular solution corresponding to the nonhomogeneous terms of power r in Eq. (19)
is modified to

fa] a a b b}
_VTrL —8(r10gr[a,2} —H{ag}) +AT<rlogr[b,J +r[b,2,}). (28)

By substitution and equating the terms associated with logr on both sides of the equation leads to

r_ ! -1 ’ /
o o Ty .
L K6 CSSK6 Cl Crr a2 a2

for the term of ¢. This is exactly the eigen relation of Eq. (22) in case 2 =1 and n = 0. Hence [a], a}]"
similarly [b}, b}]", is the eigenvector of Eq. (22) for 2 =1 and n = 0.

>



5164 J.-Q. Tarn | International Journal of Solids and Structures 39 (2002) 5157-5172

Equating the other terms of ¢ gives
_C;rl (gl + Crr) C;rl a/{ — a/1 4 P: ) (30)
K C. K (Cl -c,)c,'] 2] a; ks

The rank of the coefficient matrix in Eq. (30) is less than six because of Eq. (29). In order to have a
solution the augmented matrix must be of the same rank (Hildebrand, 1965). This provides a necessary
condition to determine a unique solution for the [a},a}]", [a7,a%]" follows from Eq. (30). A unique [b},b}]"
and [b7, b2]" are determined in the same way.

4. Eigen relation

To facilitate examining the eigen relation, let us express Eq. (22) as
N¢; = Li¢;, (31)

where ¢, is the eigenvector associated with the eigenvalue /4;,

Nn] Nn2 U
N = — .= n s
[Nrﬁ _le ’ ¢l X,
N, is a real and symm_e;tric matrix; N,3; 1S a Hermitian matrix, N,; = NL.
The eigenvalues of N and N are complex conjugate, hence

N'g, =70, (32)
It is known that ¢, is orthogonal with ¢, in the Hermitian sense (Hildebrand, 1965) such that
?, ¢, =0y, (33)

where §;; is the Kronecker delta.
The matrix N has the relation

N'JT=JN, where J= [_01 (I)] (34)

Post-multiplying Eq. (34) by ¢,, with J = —J" and Eq. (31), one has
=T ,
N (JT¢) =~ 4). (35)

This implTies that — 4, is the eigenvalue of N' and JT ¢, is the associated eigenvector. Since the eigenvalues
of N and N are complex conjugate, it follows that if /; is an eigenvalue of N, so is —/;.
Denoting the six eigenvalues of N by /; and 4,3 = —4; (i = 1,2, 3), then

N¢i+3 = _zi¢i+3' (36)

With Egs. (35) and (36), replacing ¢, by J'¢, and ¢, by ¢, in Eq. (33) gives the orthogonality property
for the eigenvectors of N:

6, 3¢, =6 (37)

Having examined the characteristics of the eigen relation, one could express the homogeneous solution
as given by Eq. (23).
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5. Thermoelastic analysis of a circular tube or bar

When a circular tube with inner and outer radii being ¢ and b is subjected to end loads and surface
tractions that do not vary in z axis, the boundary conditions are

rt, = lap, at, as,|' onr=a, (38)

rt, = |[bp, bt, bsy]' onr=bh, (39)

where p,, p, denote the internal and external radial forces; 7,, 7, the inplane shears, s,, s, the antiplane
shears. In order to maintain static equilibrium the uniform shears acting on the lateral surfaces must satisfy
the conditions t,a*> = 1,b* and s,a = spb.

For a solid bar the state of generalized plane strain and generalized torsion does not allow for inplane
and antiplane shears to be prescribed on the surfaces. Thus the boundary conditions are

rt.=[bp, 0 0]" onr=b. (40)

When the stress is independent of z, the stress resultants over the cross section Q reduce to an axial force
P,, a torque M,, and bi-axial bending moments M|, M,; the resultant shears vanish identically. The end
conditions are

/Hrsrdrdg =P, (41)
Q
where
0 1 0 P.
|0 rsinf O M
H= 0 rcosO 0]’ P= M,
0 0 r M,

The general solution for the problem is given by adding the homogeneous solution and the particular
solution along with Egs. (16)—(18) as follows:

u _ = > o Unk . Unk+3 ino a k2
o 3 3 (s o Rl P e S GRS )
+mrm +19r<rm —I—z[kl]) —i—Re{ (rzm +22["]>ew} ()
b2 Cy 0 fz 0 ’
where

n= (b —ib)[—1/2 —i/2 r/z]".

In Eq. (42) the eigenvectors [U,, X,;] are easily determined from Eq. (22) with the aid of Mathematica or
MATLAB. The eigensolution of a matrix is a standard routine in these software, in which the degenerate
cases of repeated eigenvalues are considered as well. Explicit expressions for the eigenvalues and eigen-
vectors are obtainable for the cylindrically anisotropic material having elastic symmetry with respect to the
cylindrical surfaces » = constant. In this case, ¢;s = ¢ =0, (i = 1,2,3,4), Eq. (22) is simplified and the
eigenvalues for n = 0 are found to be

i1 =0, dp=1, Jda=xK Au=0, ZAis=-1, /=K, (43)

where k = (022/C11)1/2.
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The associated linearly independent eigenvectors are

=0, Uy=[0 0 1]", Xy =[0 0 0], (44)
do=1, Up=[0 1 0", Xp=[0 0 0], (45)
=%, Us=1[h 0 0]", Xpz=[wmh 0 0], (46)
i =0, Uu=1[0 —sss” 0], Xes=[0 0 s5.7]", (47)
Jos=—1, Up=[0 —ss55/2 —s5]", Xos=[0 1 0], (48)
doo=—k, Uw=[-h 0 0]", Xpg=[nh 0 0], (49)

where the generalized eigenvector associated with the repeated eigenvalue Zo4 = 0 has been determined by
means of the Jordan chain (Pease, 1965), N¢, = Aos¢y, + @;; s;; are the elastic compliances, and

n = (011022)1/2 +cpn, %= (0116’22)1/2 —cn, h= (40116’22)71/4-

Apart from the situation g = o4 = 0, repeated eigenvalues occur when the material is cylindrically
orthotropic, transverse isotropic or isotropic. In these cases, ¢y = ¢y;, k = 1, then A = +1 are also repeated

eigenvalues. Linearly independent solutions corresponding to Ap3 = 1 and /4os = —1 are determined from
the Jordan chain as
[fl }"1.',.} :r(IOgF[Uoz on] + [U03 X03]), (50)
[ﬁ V‘L’r} :rfl(logr[U05 X05]+[U06 Xos}), (51)
where
(N - j'OJ'I)anj = 07 (] = 356)5 }~03 = 17 /106 = _17 (52)
Not  No Uo-]
N g — .= ) . 53
{Nos Ny, } G [Xo; (53)

The general solution contains the ¢, 99, b; and b,. These parameters can be determined through the end
conditions for a prescribed set of P,, M;, M| and M,. For plane deformation we may sete =19 = by = b, =0
in advance and determine subsequently the end loads that are required to maintain such a deformation. As
there is a one to one correspondence between them and the applied loads, they may be regarded as known a
priori. The remaining task is to determine the ¢,; using the boundary conditions for a specific problem. This
can be done for the general case of combined loading and specialize it to particular cases. Alternatively, one
could solve various particular loading cases and obtain the solution for combined loading by superposition.
In the following we consider various cases of particular loading conditions.

5.1. Axisymmetric deformations

Extension, torsion, internal and external pressures, uniform shearing, and a uniform temperature change
give rise to axisymmetric deformations. The end loads include P, and M,, but not M, and M,. The general
solution is given by the terms that are independent of 6 in Eq. (42):
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)2 o el [s]) oL o ]) oo+ [8]) e ori)
(54)

Imposing the boundary conditions Eqs. (38) and (39) on Eq. (54) yields the following equations to
determine the six unknowns ¢, and ¢;,3 in the solution:

3

Z(Ckaik71X0/( + dkaizk71X0k+3) + ea; + bzAT + 195162 = [pa T, Sg ]T, (55)
k=1

3 " ry
Z(ckbﬂrlxw +dib " Xois) + €8s + AT +9bcy = [p, 5 5] (56)
k=1

The stress components t,are obtained from the output equation as

T, = |:éssK6 CTC71 :| |:gl :| + gasskl - ATﬁv + ﬁéssk2r7 (57)
2

rs s

';
q | _\ 1| Uok 71| Uoks3 a; c b,
] =2 (e [Ra] e[ ] ) o] ool +ara)

k=1

where

The solution for a solid bar cannot be obtained from that of a tube by specifying a — 0. This results in a
cylinder with a pin hole, not a solid bar. For a solid bar the terms of negative power of r should be excluded
from the solution in order that the displacement and stress remain finite at the center » = 0. As a result, the
solution is

[rﬂ = kz::ckw {gzﬂ +8(V[2;] +ZF§D +19r<r{zj +z[l:)]]) +rATBj, (58)

in which the ¢; are determined from the conditions obtained from imposing the boundary condition Eq.
(40) on Eq. (58):

ickb“‘lXOk +ea, + AT +9bcy, = [py, O O]T. (59)
k=1
The stress components t, are
= |CK Clc,] [gj 4 ¢Coki — ATB, + 9C, kor, (60)
where

3

q | _ 21 | Uok a; c b,
= e R e ol rarh]

k=1

5.2. Bending of a tube or bar

When a circular tube is subjected to pure bending at the ends, the inner and outer surfaces are traction-
free. The only loading is M, and M, at the ends. The general solution to the problem is given by the n = +1
terms of Eq. (42):
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3
u = z Ulk —7 U1k+3 2 f1 L] i
|:7"E,.:| _Re{ kz:; (Clkr lk|:X1k:| +dlkr lk|:X1k+3:|> tr fz +z () ¢ ) (61)

in which the ¢j; and d;, are complex number.
Imposing the boundary conditions

rti,=0 onr=aandb (62)

on the solution and equating the real part and imaginary part of these equations yields

3 iy
ZRG{CMXMI)'”_Q + diXipza Y = —g,, (63)

k=1

3 ry
Z Im{cy X b2 + dyXip3b 2} = —hy, (64)

k=1

for the real part and imaginary part of the unknown coefficients ¢y, and ci443), (k =1, 2, 3) in Eq. (61),
where g, and h, are the real part and imaginary part of f, defined in (27).
The stress components 7, are obtained from the output equation as

T, = Re{ [(sts(Ké +iKy) CTC*] [gj } + CykirRe{(by — iby)e'}, (65)

rs rr
where

q : U, 7 1 [Uias f,
1| _ i1 k -1 k+ 2 i0
[(Iz] = Re{ ](E:] (clkr |:X1k:| + dyr |:X1k+3]> +r {&He } (66)

For pure bending of a solid bar the terms of negative power of r must be excluded from the solution.
Imposing the boundary condition rz, = 0 at » = b on the general solution, one obtains

[“} Re{ (2{2] +m +zz[g]>ew}, (7

in which the real part and imaginary part of the unknown ¢y, (k =1, 2, 3) are determined from

3
> Re{end™ Xy} = —g,, (68)
k=1

3 )
Zlm{clkbﬁll‘ilek} = —hz. (69)
k=1

The stress 7, in the bar is obtained from Eq. (65) with
3
q | _ Z it | Ul RIRARY
[qz] _Re{<k1 art [XIJ—H’ {h])e } 7

5.3. A tube or bar subjected to nonuniform thermo-mechanical loads

When the tube or bar is subjected to nonuniform surface tractions and the temperature field, the de-
formation and stress fields depend on 0. Let us consider the case when the radial traction is prescribed on
the surfaces. The boundary conditions are
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rt. = [ap,(0) 0 0]" onr=a, (71)

rt, = [bpy(0) 0 0]" onr=b, (72)
for a tube, and
rt. = [bpy(0) 0 0] onr=bh, (73)

for a solid bar.
As long as the distribution of the radial traction and the temperature field are piecewise continuous, they
may be expressed by Fourier series as

PO O TE0T= Y (A By gl (74
where
Ay B 0] = [ 120 ph(0) T(r0))e ™ do. (75)

The general solution for the problem is

I aLE { ol G 1o R ol R | B G R

rT, —1

el ea)) el =D &

Imposing the boundary conditions on the solution gives the following equations to determine the un-
known ¢, and d;:

3 _
Z(anainﬁlxnk + dnkai)'"rlxnk+3 + qn(a)b2) = [An 0 O]Tﬂ (77)

k=1

w2

Z(anbznk_lxnk + dnkb_z”/:_lxnk+3 + qn(b)bZ) = [Bn 0 O]T (78)

k=1

For a solid bar the negative power of r in the general solution must be discarded. The solution that
satisfies the boundary conditions on r = b is

(e )]

where the c¢,; are determined from

3
> e Xy + qu(b)by = [B, 0 0] (80)

k=1

The stress components t, are readily obtained using the output equation.



5170 J.-Q. Tarn | International Journal of Solids and Structures 39 (2002) 5157-5172

5.4. A tube or bar with displacement boundary conditions

The displacement boundary conditions occurs in certain problems of cylindrical anisotropy, for example,
in modeling the fiber-reinforced composite the interface between a rigid fiber and a soft matrix may be
assumed to be constrained in the displacement. When the displacement is prescribed on the lateral surfaces
of a tube, one might suspect that generalized plane strain may not exist. Let us examine the issue by
considering a tube with mixed boundary conditions such that the inner surface is fixed and the outer surface
is subjected to a uniform radial traction.

The lateral boundary conditions are

u=0 onr=a, rt.=[bp, 0 0]" onr=b. (81)

The general solution for the problem is

-5 (e [ ] rart [ ]) = ol [2 )+ 5 ]) +or (2] 45 ]) + o]

(82)
Imposing the boundary conditions on the solution yields
3 _
Z(Cka/lkilU()k + Ck+3aillk71U0k+3) + 8(31 + kzZ/a) + ﬂ(acl + kIZ) + blAT = 07 (83)
k=1
3 ) -
Z(Ckb/“k71X0k + Ck+3b7)“k71X0k+3) +éa; + 19[902 + bzAT = [pb 0 O]T (84)

k=1
Eq. (83) holds for any z provided that
Skz + 1961](1 = 0, (85)

giving ¢ = 19 = 0. This indicates that the uniform extension and twisting angle per unit length must vanish
for the state of generalized plane strain to be admissible. It does not mean that extension and torsion are
inadmissible when the displacement is prescribed, rather it suggests that an appropriate axial force and
torque must be applied at the ends in order to maintain the deformation ¢ = 9 = 0, otherwise the tube will
not be in the state of generalized plane strain. When the condition is meet, the ¢; and ¢, 3 in the solution can
be determined from Eqgs. (83) and (84).

For a solid bar with the lateral surface fixed, the general solution is

3
u | i | Uok . a; ky Cy k; b,
[MJ —;ckr [XOk]+a<r{a2}—&—Z[O])—&-ﬁr(r[cz]—kz{o +rAT by | (86)
Imposing the boundary conditions u = 0 at » = b on the solution gives
3
> b Ui + e(bay + koz/b) + 9(be; + kyiz) + b AT =0, (87)
=1
which holds for any z if
ek, + Obk; = 0, (88)
indicating that ¢ =4 = 0. Again, an axial force and a torque must be applied at the ends in order to

maintain the state of generalized plane strain. When it does, the ¢; in the solution can be determined from
Eq. (87), the stress components t, are obtained using the output equation.



J.-Q. Tarn | International Journal of Solids and Structures 39 (2002) 5157-5172 5171

6. Closure

In the formulation [u, r7,] has been taken as the state vector. This is advantageous for multilayered
systems in which the interfacial and boundary conditions on the cylindrical surfaces » = constant are di-
rectly expressed by [u, r7,.|. These conditions are easily satisfied using the transfer matrix without resort to a
layerwise approach. For analysis of a multilayered cylindrical tube using the method of transfer matrix, see
Tarn and Wang (2001). The state space formalism in conjunction with the transfer matrix is an elegant and
effective approach for problems of a multilayered system.

A subject area of long standing is the three-dimensional anisotropic elasticity. An explicit formulation
based on the basic three-dimensional equations as they stand would be intractable, especially in the cy-
lindrical coordinate system. The present formalism paves a new way to treat the three-dimensional prob-
lems. The state equation and the output equation embrace all the three-dimensional equations of
anisotropic elasticity. Only two independent unknown quantities, u and rz, in the cylindrical coordinates; u
and 7, in the Cartesian coordinates, (Tarn, 2002) play the key roles in the formalism. The elastic properties
of the anisotropic material are characterized by four sub-matrices of the material matrix. With the for-
malism, there is no need to deal with the individual components of the displacement and stress and the
elastic constants. The simplicity of the formulation makes treatment of a three-dimensional problem less
formidable. Much can be gained if extension to three dimensions is viewed in the state space framework.

In closing, we remark that the Lekhnitskii and Stroh formalisms were seldom implemented in compu-
tational mechanics due to the use of stress functions. Since the stress components are obtained by differ-
entiating the stress functions twice, a computational model based on them demands C? continuity of the
assumed functions. By contrast, in the state space formalism the stresses as well as the displacements are
regarded as the state variables, a computational model based on it in conjunction with a variational ap-
proach requires only C° continuity. A preliminary study shows that numerical modeling in the state space
framework is worthy pursuing.
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